import dataclasses
import os
import datasets
import tokenizers
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim.lr_scheduler as lr_scheduler
import tqdm
from torch import Tensor
from torch.distributed.checkpoint import load, save
from torch.distributed.checkpoint.state_dict import StateDictOptions, get_state_dict, set_state_dict
from torch.distributed.pipelining import PipelineStage, ScheduleGPipe
# Build the model
@dataclasses.dataclass
class LlamaConfig:
“”“Define Llama model hyperparameters.”“”
vocab_size: int = 50000 # Size of the tokenizer vocabulary
max_position_embeddings: int = 2048 # Maximum sequence length
hidden_size: int = 768 # Dimension of hidden layers
intermediate_size: int = 4*768 # Dimension of MLP’s hidden layer
num_hidden_layers: int = 12 # Number of transformer layers
num_attention_heads: int = 12 # Number of attention heads
num_key_value_heads: int = 3 # Number of key-value heads for GQA
class RotaryPositionEncoding(nn.Module):
“”“Rotary position encoding.”“”
def __init__(self, dim: int, max_position_embeddings: int) -> None:
“”“Initialize the RotaryPositionEncoding module.
Args:
dim: The hidden dimension of the input tensor to which RoPE is applied
max_position_embeddings: The maximum sequence length of the input tensor
““”
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
# compute a matrix of n\theta_i
N = 10_000.0
inv_freq = 1.0 / (N ** (torch.arange(0, dim, 2) / dim))
inv_freq = torch.cat((inv_freq, inv_freq), dim=–1)
position = torch.arange(max_position_embeddings)
sinusoid_inp = torch.outer(position, inv_freq)
# save cosine and sine matrices as buffers, not parameters
self.register_buffer(“cos”, sinusoid_inp.cos())
self.register_buffer(“sin”, sinusoid_inp.sin())
def forward(self, x: Tensor) -> Tensor:
“”“Apply RoPE to tensor x.
Args:
x: Input tensor of shape (batch_size, seq_length, num_heads, head_dim)
Returns:
Output tensor of shape (batch_size, seq_length, num_heads, head_dim)
““”
batch_size, seq_len, num_heads, head_dim = x.shape
dtype = x.dtype
# transform the cosine and sine matrices to 4D tensor and the same dtype as x
cos = self.cos.to(dtype)[:seq_len].view(1, seq_len, 1, –1)
sin = self.sin.to(dtype)[:seq_len].view(1, seq_len, 1, –1)
# apply RoPE to x
x1, x2 = x.chunk(2, dim=–1)
rotated = torch.cat((–x2, x1), dim=–1)
output = (x * cos) + (rotated * sin)
return output
class LlamaAttention(nn.Module):
“”“Grouped-query attention with rotary embeddings.”“”
def __init__(self, config: LlamaConfig) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_kv_heads = config.num_key_value_heads # GQA: H_kv < H_q
# hidden_size must be divisible by num_heads
assert (self.head_dim * self.num_heads) == self.hidden_size
# Linear layers for Q, K, V projections
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
def forward(self, hidden_states: Tensor, rope: RotaryPositionEncoding) -> Tensor:
bs, seq_len, dim = hidden_states.size()
# Project inputs to Q, K, V
query_states = self.q_proj(hidden_states).view(bs, seq_len, self.num_heads, self.head_dim)
key_states = self.k_proj(hidden_states).view(bs, seq_len, self.num_kv_heads, self.head_dim)
value_states = self.v_proj(hidden_states).view(bs, seq_len, self.num_kv_heads, self.head_dim)
# Apply rotary position embeddings
query_states = rope(query_states)
key_states = rope(key_states)
# Transpose tensors from BSHD to BHSD dimension for scaled_dot_product_attention
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
# Use PyTorch’s optimized attention implementation
# setting is_causal=True is incompatible with setting explicit attention mask
attn_output = F.scaled_dot_product_attention(
query_states,
key_states,
value_states,
is_causal=True,
dropout_p=0.0,
enable_gqa=True,
)
# Transpose output tensor from BHSD to BSHD dimension, reshape to 3D, and then project output
attn_output = attn_output.transpose(1, 2).reshape(bs, seq_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output
class LlamaMLP(nn.Module):
“”“Feed-forward network with SwiGLU activation.”“”
def __init__(self, config: LlamaConfig) -> None:
super().__init__()
# Two parallel projections for SwiGLU
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.act_fn = F.silu # SwiGLU activation function
# Project back to hidden size
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
def forward(self, x: Tensor) -> Tensor:
# SwiGLU activation: multiply gate and up-projected inputs
gate = self.act_fn(self.gate_proj(x))
up = self.up_proj(x)
return self.down_proj(gate * up)
class LlamaDecoderLayer(nn.Module):
“”“Single transformer layer for a Llama model.”“”
def __init__(self, config: LlamaConfig) -> None:
super().__init__()
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=1e–5)
self.self_attn = LlamaAttention(config)
self.post_attention_layernorm = nn.RMSNorm(config.hidden_size, eps=1e–5)
self.mlp = LlamaMLP(config)
def forward(self, hidden_states: Tensor, rope: RotaryPositionEncoding) -> Tensor:
# First residual block: Self-attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attn_outputs = self.self_attn(hidden_states, rope=rope)
hidden_states = attn_outputs + residual
# Second residual block: MLP
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states) + residual
return hidden_states
class LlamaModel(nn.Module):
“”“The full Llama model without any pretraining heads.”“”
def __init__(self, config: LlamaConfig) -> None:
super().__init__()
self.rope = RotaryPositionEncoding(
config.hidden_size // config.num_attention_heads,
config.max_position_embeddings,
)
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleDict({
str(i): LlamaDecoderLayer(config) for i in range(config.num_hidden_layers)
})
self.norm = nn.RMSNorm(config.hidden_size, eps=1e–5)
def forward(self, input_ids: Tensor) -> Tensor:
# Convert input token IDs to embeddings
if self.embed_tokens is not None:
hidden_states = self.embed_tokens(input_ids)
else:
hidden_states = input_ids
# Process through all transformer layers, then the final norm layer
for n in range(len(self.layers)):
if self.layers[str(n)] is not None:
hidden_states = self.layers[str(n)](hidden_states, self.rope)
if self.norm is not None:
hidden_states = self.norm(hidden_states)
# Return the final hidden states, and copy over the attention mask
return hidden_states
class LlamaForPretraining(nn.Module):
def __init__(self, config: LlamaConfig) -> None:
super().__init__()
self.base_model = LlamaModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
def forward(self, input_ids: Tensor) -> Tensor:
hidden_states = self.base_model(input_ids)
if self.lm_head is not None:
hidden_states = self.lm_head(hidden_states)
return hidden_states
# Generator function to create padded sequences of fixed length
class PretrainingDataset(torch.utils.data.Dataset):
def __init__(self, dataset: datasets.Dataset, tokenizer: tokenizers.Tokenizer,
seq_length: int, device: torch.device = None):
self.dataset = dataset
self.tokenizer = tokenizer
self.device = device
self.seq_length = seq_length
self.bot = tokenizer.token_to_id(“[BOT]”)
self.eot = tokenizer.token_to_id(“[EOT]”)
self.pad = tokenizer.token_to_id(“[PAD]”)
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
“”“Get a sequence of token ids from the dataset. [BOT] and [EOT] tokens
are added. Clipped and padded to the sequence length.
““”
seq = self.dataset[index][“text”]
tokens: list[int] = [self.bot] + self.tokenizer.encode(seq).ids + [self.eot]
# pad to target sequence length
toklen = len(tokens)
if toklen < self.seq_length+1:
pad_length = self.seq_length+1 – toklen
tokens += [self.pad] * pad_length
# return the sequence
x = torch.tensor(tokens[:self.seq_length], dtype=torch.int64, device=self.device)
y = torch.tensor(tokens[1:self.seq_length+1], dtype=torch.int64, device=self.device)
return x, y
def load_checkpoint(model: nn.Module, optimizer: torch.optim.Optimizer) -> None:
dist.barrier()
model_state, optimizer_state = get_state_dict(
model, optimizer, options=StateDictOptions(full_state_dict=True),
)
load(
{“model”: model_state, “optimizer”: optimizer_state},
checkpoint_id=“checkpoint-dist”,
)
set_state_dict(
model, optimizer,
model_state_dict=model_state, optim_state_dict=optimizer_state,
options=StateDictOptions(broadcast_from_rank0=True, full_state_dict=True),
)
dist.barrier()
def save_checkpoint(model: nn.Module, optimizer: torch.optim.Optimizer) -> None:
dist.barrier()
model_state, optimizer_state = get_state_dict(
model, optimizer, options=StateDictOptions(full_state_dict=True),
)
save(
{“model”: model_state, “optimizer”: optimizer_state},
checkpoint_id=“checkpoint-dist”,
)
dist.barrier()
# Load the tokenizer and dataset
tokenizer = tokenizers.Tokenizer.from_file(“bpe_50K.json”)
dataset = datasets.load_dataset(“HuggingFaceFW/fineweb”, “sample-10BT”, split=“train”)
# Initialize the distributed environment
dist.init_process_group(backend=“nccl”)
rank = dist.get_rank()
local_rank = int(os.environ[“LOCAL_RANK”])
world_size = dist.get_world_size()
device = torch.device(f“cuda:{local_rank}”)
print(f“World size {world_size}, rank {rank}, local rank {local_rank}. Using {device}”)
assert world_size == 3, f“This script is designed for 3 GPUs, got {world_size}”
# Create pretraining model with default config on meta device to prevent OOM
with torch.device(“meta”):
model_config = LlamaConfig()
model = LlamaForPretraining(model_config)
# Partition the model by removing some layers
num_layers = model_config.num_hidden_layers
partition = [num_layers // 3, 2 * num_layers // 3, num_layers]
if rank == 0:
# from embedding to 1/3 of the decoder layers
for n in range(partition[0], partition[2]):
model.base_model.layers[str(n)] = None
model.base_model.norm = None
model.lm_head = None
elif rank == 1:
# from 1/3 to 2/3 of the decoder layers
model.base_model.embed_tokens = None
for n in range(0, partition[0]):
model.base_model.layers[str(n)] = None
for n in range(partition[1], partition[2]):
model.base_model.layers[str(n)] = None
model.base_model.norm = None
model.lm_head = None
elif rank == 2:
# from 2/3 to the end of the decoder layers and the final norm layer, LM head
model.base_model.embed_tokens = None
for n in range(partition[1]):
model.base_model.layers[str(n)] = None
else:
raise ValueError(f“Invalid rank: {rank}”)
# Move model from meta device to CUDA device, then initialize the weights
def reset_all_weights(model: nn.Module) -> None:
@torch.no_grad()
def weight_reset(m: nn.Module):
reset_parameters = getattr(m, “reset_parameters”, None)
if callable(reset_parameters):
m.reset_parameters()
# Applies fn recursively to model itself and all of model.children()
model.apply(fn=weight_reset)
model.to_empty(device=device)
reset_all_weights(model)
model.train()
stage = PipelineStage(model, stage_index=rank, num_stages=world_size, device=device)
# Training parameters
epochs = 3
learning_rate = 1e–3
batch_size = 64
seq_length = 512
num_warmup_steps = 1000
PAD_TOKEN_ID = tokenizer.token_to_id(“[PAD]”)
# DataLoader, optimizer, scheduler, and loss function
dataset = PretrainingDataset(dataset, tokenizer, seq_length, device)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
)
num_training_steps = len(dataloader) * epochs
print(f“Number of training steps: {num_training_steps} = {len(dataloader)} * {epochs}”)
optimizer = torch.optim.AdamW(
model.parameters(), lr=learning_rate, betas=(0.9, 0.99), eps=1e–8, weight_decay=0.1,
)
warmup_scheduler = lr_scheduler.LinearLR(
optimizer,
start_factor=0.1, end_factor=1.0, total_iters=num_warmup_steps,
)
cosine_scheduler = lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=num_training_steps – num_warmup_steps,
eta_min=0,
)
scheduler = lr_scheduler.SequentialLR(
optimizer,
schedulers=[warmup_scheduler, cosine_scheduler],
milestones=[num_warmup_steps],
)
# if checkpoint-dist dir exists, load the checkpoint to model and optimizer
# Note: You should implement how to reset the epoch and step to allow correct resume
if os.path.exists(“checkpoint-dist”):
load_checkpoint(model, optimizer)
# Create pipeline schedule
def loss_fn(logits: Tensor, target_ids: Tensor) -> Tensor:
logits = logits.view(–1, logits.size(–1))
target_ids = target_ids.view(–1)
return F.cross_entropy(logits, target_ids, ignore_index=PAD_TOKEN_ID)
n_microbatches = 4 # num split per batch
schedule = ScheduleGPipe(stage, n_microbatches=n_microbatches, loss_fn=loss_fn)
# start training
for epoch in range(epochs):
pbar = tqdm.tqdm(dataloader, desc=f“Epoch {epoch+1}/{epochs}”, disable=(rank != world_size – 1))
for batch_id, batch in enumerate(pbar):
if batch_id % 1000 == 0:
save_checkpoint(model, optimizer)
# zero grad before forward pass, since no explicit backward pass is called
optimizer.zero_grad(set_to_none=True)
# get batched data
input_ids, target_ids = batch
if rank == 0:
schedule.step(input_ids)
elif rank == world_size – 1:
losses = [] # expects one lost per microbatch
logits = schedule.step(target=target_ids, losses=losses)
with torch.no_grad():
pbar.set_postfix(loss=sum(losses).item() / len(losses))
else:
schedule.step()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
pbar.update(1)
pbar.close()
# Save the model
save_checkpoint(model, optimizer)
# Clean up the distributed environment
dist.destroy_process_group()
